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Abstract

Consensus protocols have traditionally required for participating nodes to store all of the states
as the network progresses. Within these models, imperfect network conditions occur, with nodes
dropping in and out of participation within the protocol. Without a stateless distributed system,
nodes re-joining the protocol must depend on other nodes to gather information on the current
state of the network. This leaves room for corruption depending on the intentions of the node that
broadcasts the state of the network to the new node. Issues surrounding partially synchronous
setting as described above has motivated statelessness within protocols. Statelessness allows nodes
joining the network to learn about the current state from a fixed amount of data (e.g, the genesis
block).

In this paper, we explore the current implementations of stateless protocols, and explore the
road maps redefining older protocols that need to scale more efficiently with increased usage.
Getting rid of many replicas of the same state history, paired with a simultaneous elimination of
possible equivocation to newly participating node from the network creates promising protocol
updates for future development. Given the limited storage in computers, investing in further
exploration into statelessness has shown promise as distributed ledgers aim to take up a constant
amount of space once statelessness is implemented onto a network. This issue only becomes more
pertinent as the growth of large networks like Bitcoin and Ethereum.
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1 Introduction

The current landscape within stateful blockchains his given rise to discussions surrounding stateless-
ness, as both Bitcoin and Ethereum state sizes grow north of 200GB[18]. This explosion of state
storage has created an entire new field of blockchain development where researchers aim to manipulate
blockchains in order to decide how to reallocate state throughout participating nodes in order to make
future blockchains lighter to store. An important delineation needs to be made as we delve further
into the discussion of the need for statelessness on current blockchains. History is defined as past
information that is kept for rebroadcasting or archiving purposes, but not critical for the process of
the chain. History would include older blocks and receipts that may be kept by nodes. Although they
are kept, the key point is that they are not state, since they aren’t critical for the chain growth proce-
dure. In contrast, state is the term for all information that nodes must store on a network in order to
successfully participate in the chain growth procedure. For example, on the Ethereum network, nodes
must store four different types of items in order to participate in the chain growth. First is account
balances and nonces, which collectively agree on all of the accounts on the the network. Next, all
smart contract code and required storage is kept in the state, which causes larger problems. Given
that a lot of decentralized apps (dapps) are created on the blockchain everyday and given a one time
use, these dapps abuse the storage of the network and create costs for every new node that needs to
join the network and also store the state. Without proper storage etiquette, users on the network will
abuse contract storage, leading to the explosion of storage for the Ethereum network that we see today.
Lastly, consensus-related data is stored, but protocols in large part already optimize the amount of
storage that this data takes up within a nodes state.

Without proper management of storage on the network, blockchains like Ethereum have a lot of junk
state that has to be kept and downloaded by all nodes joining the network. The imbalance between the
gas fee to add to the network as a miner and the perpetual cost to the network as a whole when state
becomes larger creates a dangerous dynamic looking forward into the future of stateful blockchains.
In practice, Ethereum contracts developers can use the self-destruct property in order to free up the
storage used in the creation of the initial contract. The reality is that there is little incentive to partake
in these best practices, hence the rapid growth of state on these networks.
This explosion of state creates a more expensive environment for new nodes to join the network. Main-
taining an Ethereum node on AWS costs up to $70, and steadily increases with state given the amount
that needs to be kept per node. This creates an unintended barriers to entry that is slowly decreasing
the number of active nodes. With this decrease, the entire network becomes more centralized to the
few nodes that are willing to take on the daily costs of hosting a node. This trend creates the exact
opposite situation that blockchain network aim to foster, since decentralization is a vital part of their
value proposition to the world.

As it stands, there are variations of statelessness that govern the ability of blockchains to provide
nodes joining the network with adequate information about the state of the entire ledger.

Weak Statelessness Weak statelessness is characterized by the existence of a a function f, f(I,S;) =
S;. where I is the initial state of the blockchain, and S; is the set of all participating nodes and their
local state at a given time t[12]. Weak statelessness is characterizes by having the proposing nodes
have an entire state while all of the voting/validating nodes do not have to store a state at all. This
important definition is the most popular topic when protocol developers talk about statelessness and
its future in helping blockchains scale by requiring less storage as a network.

Partial statelessness Partial statelessness differs by having voting/validating blocks still carry some
state with them, but only relative to some old state in the past. This means that any node on the
netowrk that is active only needs to store a subsection of the entire history, which also decreases the
amount of storage in the system as usage goes up. This version of stateless is the first step down from
the current state-of-the-art that exacerbates the explosion of storage needed to maintain state.

The current technology behind many large blockchains requires a lot fo storage that becomes trou-
blesome on systems with limited RAM. With the Unspent Transaction Set(UTXO) in bitcoin reaching



3GB, and 16GB for Ethereum [9], the "state explosion” has caused researchers problems as usage
continues to rapidly expand. Without a fix, part of the network’s state would have to be stored in
secondary disks, leading to slower transaction validation, and higher vulberability to DoS attacks like
the one that occured on Ethereum in 2016[9].

The rest of this paper is strucuted as follows, we first address multiple methods all centered around
the effort of minimizing the amount of state that a active node has to carry, giving examples of current
work that aims at improving scalability and/or reducing the potential for blockchain to have to take
on different methods of storage outside of the local computer. We then explore some of the proposed
designs for how statelessness can be implemented in order to immediately impact the performance of
distributed ledger technologies. Lastly, we explore the Ethereum research around statlessness, as they
lead the effort in implementing it into their ecosystem. We conclude with some final discussion of what
lies ahead in the stateless space.

2 State Reduction

Prior to the introduction of statelessness, much work has been done to reduce the required amount of
state stored on some or all nodes on the network. We classify theses approaches as State Reduction.
Before discussing these strategies, it is prudent to give an overview of all the different state components
that nodes must maintain. Legacy blockchains typically leverage three different data structures to carry
out the protocol:

e Transactions, which consist of declarations that some amount of currency is to be transferred
from one address/account to another

e Blockchain Headers which maintain the security of the blockchain via the inclusion of relavent
nonce/hash fields that cryptographically prove that certain sets of transactions are to be include-
don the block.

e Account Balances, which refer to the existing point-in-time balances of all the addresses/accounts
in the protocol.

In Bitcoin, Node bootstrapping requires the retrieval of transactions and blockchain headers from
other nodes on the network. Account balances are not retrieved because they are redundant in the
sense that the ordered set of transactions included on the blockchain uniquely determines the current
account balances (i.e. there is only one unique account balance ledger consistent with a particular set
of transactions and block headers). This is because transactions essentially define the state transitions
between each new iteration of the account balance ledger. For example, if at block ¢ Steve has b, Bitcoin
and Berry has b, Bitcoin, and block 7 includes a transaction of amount a from Steve to Berry, then the
account balances for Steve and Berry in block ¢ 4+ 1 must be b — a and b, + a respectively as shown
in figure 1. Balances are uniquely determined by transactions, but the converse is not true (clearly, a
particular arrangement of account balances could be a result of infinitely many different transaction
histories). Thus, many blockchains choose to bootstrap via transactions. However, bootstrapping via
transactions is significantly more costly as the transaction history tends to be very large and grows at
a relatively constant rate (over 360 GB as of October 21) whereas the account balance data structure
is significantly smaller (3.5 GB in Bitcoin as of October 21) and grows at a significantly slower rate
than the transaction history. For this reason, some state reduction strategies choose to bootstrap new
nodes via account balances, allowing for significantly reduced memory and network requirements at
the cost of the ability to query historical transaction data.

State Reduction strategies can be broadly categorized by two main approaches:

e Trust Delegation approaches, where nodes remove portions of their state in a way that makes
them lose the ability to maintain the entirety of the original state. Trust delegating nodes instead
rely on other nodes the complete state to answer queries related to the state that trust delegating
nodes no longer have access to.

e Blockchain Pruning, where nodes internally optimize the structure of their state in a way that
maintains the entirety of the original state. Nodes that undergo blockchain pruning still have
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Figure 1: State Transition

access to the entirety of the state/ledger after pruning, allowing them to perform all relevant
data lookups and transaction validations.

The dichotomy between trust delegation and blockchain pruning can best be conceptualized via its
analogues to lossy vs lossless data compression. Trust delegation is similar to lossy data compression,
where parts of the original state are irrecoverable by the node (except by querying a peer node on the
network). Blockchain pruning is similar to lossless data compression, where the format of the state
has been optimized, but the entirety of the original state is still reproducible by the node.

2.1 Trust Delegation

One simple and commonly adopted approach to the blockchain state problem involves some subset of
nodes not executing the blockchain protocol in its entirety, but rather relying on some other trusted
nodes (often referred to as ”full” nodes) to perform some of the verification steps. This approach is
inherently riddled with security concerns, as the network becomes centralized on the full nodes that
perform the validation. The main idea of the blockchain is that its security should depend only on the
cryptographic primitives underlying the chain itself, as opposed to some centralized authority(s), and
trust delegation is the antithesis of this approach. Nonetheless, for completeness we summarize some
of the widely adopted trust delegation approaches:

2.1.1 Light Nodes

Light Nodes [16] are nodes that opt to not download the entire blockchain, but rather download just
the block headers for purposes of validating transactions. This allows the nodes to skip downloading
the blockchain to perform verification, significantly decreasing the memory and network load on the
system. However, lightweight nodes are extremely susceptible to fraudulent transactions as they only
perform Simplified payment verification (SPV) to verify transactions, and do not validate the rules of
the underlying application since they do not have access to all of the state information. For example,
a light node may accept a transaction carried out with fake/invalid bitcoin if it requests transaction
verification from a dishonest node. This attack vector can be mitigated by requesting transaction
verification from several nodes. Nonetheless, no matter what precautionary measures are taken, there
will always be a significant risk of fraudulent transactions because the lightweight node no longer relies
on the cryptographic proofs underlying the blockchain, but rather relies on other nodes (which are
very difficult/impossible to prove are honest).

2.1.2 Hot Wallets

Taking an even smaller responsibility than that of a light node, Hot Wallets [15] allow users to com-
pletely outsource fund management to a trusted third party who can issue transactions on their be-



half. This phenomenon has grown significantly as blockchains such as Bitcoin have started to achieve
widespread adoption, as many people who own Bitcoin lack both the computing power and the technical
expertise to host a node on the network. Services such as Coinbase and Binance perform transactions
on the users’ behalf. This approach is particularly susceptible to attack, as hot wallet services will
have access to a large amount of the currency, creating a large incentive for attackers to try to breach
the third parties and steal the currency.

2.2 Blockchain Pruning

Taking a more security-oriented approach than the Trust Delegation approaches, Blockchain pruning
[10] aims to isolate components of the blockchain that nodes can safely delete, while preserving the
ability to run the entirety of the protocol. In many cases, this requires restructuring the deleted data
in a more optimized/compressed manner, so as to greatly reduce the memory footprint of the state
that remains. The literature evaluates pruning algorithms based on three key metrics:

e Scalability. This includes the memory requirements needed for a full node on the network,
the network bandwidth associated with bootstrapping new nodes, and the time/computational
power required for a new node to be synchronized.

e Security. Safety of the blockchain is paramount, although the rigorous security requirements
are deeply connected to the scalability concerns of existing blockchain technologies, as scalability
and security tend to trade-off. Some pruning algorithms increase scalability at the expense of
relaxed security assumptions

e Backward Compatibility. Many of the most well-established blockchains (in particular, Bit-
coin) suffer from scalability problems the most. As a result, much of the literature is focused on
finding solutions that can be added into existing technologies. In particular, Much emphasis is
placed on solutions that can be incrementally adopted, or in other words, are compatible with
some nodes running the new protocol and other running the old protocol. This is desirable as it
prevents the network from having to perform a coordinated hard fork in order to adopt the new
feature.

2.2.1 Simple Block Pruning

Simple block pruning [19] has been adopted into the Bitcoin client. The most straightforward of the
approaches we will discuss, simple block pruning involves a new node bootstrapping the blockchain as
per usual by downloading the longest chain from a peer and building the UTXO set by "replaying” all
the transactions. Once the UTXO set is generated, the node can safely delete (i.e. prune) all of the
old blocks, as the UTXO set is sufficient information to perform validation on incoming transactions.

From a scalability perspective, simple pruning only reduces the memory requirements of the nodes
that utilize this approach, as they are able to discard of most of the transaction data of the blockchain.
However, simple pruning does nothing to reduce the quantity of data needed to be transferred of the
the network, as new nodes must still download the entire chain to recreate the UTXO set. In fact the
network may be placed under additional stress since nodes that undergo simple pruning are unable to
bootstrap new nodes, potentially forcing new nodes to fetch the chain information from further away
nodes and over more costly channels. This makes them similar to light nodes the the sense that part of
their functionality (bootstrapping new nodes) is lost. Additionally, the computational power required
to synchronize a new node is completely unchanged, as the new node must still download the entire
chain in order to compute the current local state.

2.2.2 Mini-Blockchain Pruning

The Mini-Blockchain Scheme is a pruning strategy based on synchronization of account balances, with
strong similarities to other balance synchronization pruning protocols [2] [5] [7] The core observation
underlying Mini-Blockchain’s design is the fact that in Bitcoin, one mechanism is responsible for all of
the core parts of the blockchain:

e Coordinating how the network processes transactions



e Securing the network via proof-of-work
e Managing account balances
e Maintaining historical records of the coins’ ownership

In particular, the authors note that in Bitcoin synchronization, the historical transaction history
and the account balances are tightly coupled via the contents of the blocks. This means that obtaining
the current state requires "replaying” the entire history. While this makes sense from the perspective
of having a single source of truth, it is the root cause of the growing cost of bootstrapping a new
node on the network. To decouple these components of the blockchain, Mini-Blockchain splits the
functionality across three distinct data structures:

The account tree, which is responsible solely for maintaining the balances of all non-empty addresses.
When transactions are executed, the values of the relevant addresses of the account tree merely need to
be recomputed, instead of adding new data and increasing the size of the data structure. This allows
the account tree to be roughly constant in size over time (As new accounts/addresses get created, the
tree will grow, although the size is still roughly bounded by the number of people would feasible own
the currency, which provides an upper bound on its size. In particular, the account tree size does not
grow with each new transaction). The account tree has a hash tree structure, with each node being
assigned a hash of the hashes of its children. This builds up to a ”master hash” at the root node of
the tree, which is treated as a reference to uniquely identify the tree from the other parts of the chain.

The proof chain, which consists of the block headers. New nodes entering the network must
download the entire proof chain to verify the chain with the highest cumulative proof of work. Since
the hashes rely only on the block headers, nodes do not need to obtain old transactions to verify the
proof of work on the chain. The proof chain maintains the proof of work to guarantee the security of
the blockchain in the same way bitcoin does. in addition to including the master hash of the block, the
proof chain headers include the root hash of the account tree. this cryptographically ties the account
tree to the proof chain, allowing a node to verify that a particular account tree is associated with a
certain block number. A visual representation of the proof chain is shown below

Block Header Block Header Block Header
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Figure 2: Structure of the Proof Chain

The mini-blockchain component, which is similar to the regular blockchain, with the key difference
being that only the most recent transactions are kept. Nodes are able to prune old transactions because
they are no longer needed to bootstrap a new node, since the balance information is encapsulated in
the account tree.

2.2.3 Coin Prune

CoinPrune [10] is part of a family blockchain pruning strategies built on the concept of snapchat
maintenance and synchronization [1] [6], as opposed to the balanced-based synchronization seen in
minichain. Nodes periodically create snapshots of their local state (e.x. the current UTXO set in
Bitcoin). When bootstrapping a new node, the snapshot is shared instead of the entire blockchain.
This greatly reduces the storage requirements, network footprint, and synchronization time. Storage
and network requirements are also reduced because the current UTXO set is significantly smaller than
the entire blockchain.

To maintain the security of the synchronization process, snapchots must be publicly tied to the
blockchain by the inclusion of a cryptographic identifier of the snapchot on the chain. In particular,
the authors note that the coinbase transactions field of the bitcoin block may contain 100B of arbitrary
data, which is currently ignored by nodes but may be used as a reference to the snapshots. This makes
CoinPrune Bitcoin-compatible through a phase-in adoption process where it is possible for some nodes



to adopt CoinPrune but not others (since the non-adopted nodes will just ignore the references to the
snapshots). Although the authors focus on Bitcoin backward compatibility, any blockchain with space
in each block for some arbitrary data will be able to incrementally adopt CoinPrune.

To join the network, a node must first download a recent snapshot, and then download the head-
erchain, which consists of only the headers of each block on the blockchain. The node can use the
headerchain to choose the blockchain branch with the most proof-of-work. From here, the node can
retreive the chain tail, which is all of the block mined after the snapshot. The node can replay these
blocks onto the snapshot to obtain the current state.

Since CoinPrune allows nodes to securely bootstrap via a snapshot, headerchain, and chaintail,
nodes may save disk space by prune blocks prior to the snapshot. The main disadvantage of this
approach is that historical data on previous transactions is not quereable, since the node now only
has the current state and some of the recent transaction history. to remedy this, the authors suggest
maintaining a small subset of archival nodes that maintain the entire blockchain in order to maintain
the full historical transaction data.

3 Theoretical designs of Statelessness

3.1 EDRAX

EDRAX [4] is a cryptocurrency architecture which relies on short commitments contained in each
consecutive block rather than relying on nodes storing the whole state of the blockchain. Because
of the large state in most cryptocurrency systems (ie: Bitcoin, Ethereum), nodes are designed to be
stateful, meaning that they keep some smaller state to keep track of the elements within the system. For
Bitcoin (and others) “the validation state is a set of immutable coins called UTXO (unspent transaction
outputs)” [4]. Other blockchains (Ethereum and others) maintain a set of mutable accounts in which
a balance is maintained. In the UTXO model, a transaction is valid if it only uses unspent tokens,
whereas in the account model a transaction is valid if the amount of tokens being transferred is less
than the sending account’s balance. These validation states are somewhat difficult to maintain and
will continue to grow as these cryptocurrencies are more commonly used. EDRAX proposes a stateless
validation architecture which is applicable to either the UTXO or account model.

In EDRAX, blocks contain a constant size commitment to the current validation state. Additionally,
clients store a local proof that their coins can be spent with respect to the block commitment. When
a transaction is made, it includes the digital signature from the sender as well as the local proof of
their “account” status. After each commitment, users synchronize their local proofs.
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Figure 3: EDRAX Commitment Scheme

4 Practical implementations

4.1 Ethereum Stateless Roadmap

Ethereum is the leading blockchain for community built decentralized applications and cryptocurrency
related projects. As mentioned previously, due to the widespread adoption of the Ethereum blockchain,



the state has reached and continues to grow to an increasingly problematic size, causing concerns of
centralization as it becomes more difficult for an individual to operate a full node (see figure below).
Thankfully, Ethereum’s diverse developer community is rich with an ongoing discourse on ways to
improve the system to achieve desired performance. There has been a large amount of ongoing research
conducted by members of the Ethereum community relating to managing state size, therefore, we
dedicate section 4.1 to outlining Ethereum’s multi-staged implementation plan of state management.
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The two main strategies to managing the state size of Ethereum are State expiry and weak state-
lessness. State expiry consists of removing a state that has not been recently accessed. This would
reduce the state approximately to a flat 20-50 GB. Weak statelessness would require that only block
proposers store the state, and allow block proposers to verify blocks statelessly. Vitalik Buterin and
the Ethereum foundation have proposed a road-map to achieving both of these states in a well thought
out way. These changes will likely come after the “merge” which is the first big step of Ethereum 2.0
[13].

4.1.1 Verkle Trees transition

The first state of Ethereum’s stateless road-map is to introduce Verkle trees [11] as the way to store
state. A hard fork would occur, where afterwards Verkle trees would store all edits to state and copy
all of the accessed state, and the hexary Patricia tree would no longer be modifiable. Verkle trees allow
for witnesses (proofs of data’s existence in a state tree) to be reduced to a size of 200 KB per account.
A Merkle Patricia tree uses hashes, whereas a Verkle tree uses vector commitments. A hash has a
limitation by needing the entire vector to be passed to determine location and value. Instead, we can
use vector commitments which contain an “opening” which allows us to verify a portion of the source
data without revealing the entire vector. For a Merkle proof, you have to pass 15 siblings per level (7
on average), whereas for vector commitments you only need to pass the data at each level along with
a commitment. This allows for a much smaller amount of data necessary to validate the source. Since
we also don’t need to reveal all siblings per level, each level can thus contain far more nodes, allowing
for a shallower tree. They have chosen a tree structure with 256 and an estimated 4 levels of proof.

4.1.2 State Expiry

State Expiry [13] is the concept of having old state that isn’t directly relevant being deleted from the
state trees maintained by the nodes in the network. The core idea is that there is a single state tree
per “period,” approximately one year. After the end of a period, an empty state tree is initialized for
the new period and any state updates will go to that tree.



Only the most recent tree can be modified, all older trees are immutable and their objects can only
be made copies of that are included in newer trees and supersede the older copies. Full nodes only
store the two most recent trees and don’t need a witness for reading objects within those two trees,
whereas reading older trees requires providing witnesses. A witness is a proof that verifies some value
within the tree that one can verify only using the root of the tree. This proof needs to show that the
data was present in the period 2 periods ago. If you are trying to resurrect data in n periods ago, for
all n > ¢ >= 2 you must submit a proof of absence at all periods 7. This, of course, results in a higher
cost for resurrection. Addresses will also be extended to include the period that the transaction takes
place in.
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4.1.3 State Networks and Portal network

State networks are another useful tool for minimizing the state that full nodes are required to store. The
idea is to provide a parallel network to the block propagation network in which each node only stores
a fraction of the data which holistically represents the entire state. Users can query this network on an
as-needed basis. Therefore, validators don’t need to store any data relating to the state whatsoever.
The data is validated via a Verkle or Merkle proof, however, this detail is still under debate.

4.1.4 State transition

State transition is a key idea for weak statelessness, as it defines the way in which the minimized
state is updated as more blocks are added to the chain. Suppose we can define a state transition by a
function STF(S, B) — S’. S and S’ are states and B is a block (or transaction T). The root state of S
is a 32 byte root hash of a Merkle tree containing S. B contains a witness W which is a set of Merkle
branches proving the values of all data that the execution of B accesses. The STF function takes a
state root, block, and witness as an input and outputs the new state based on the information provided
by the witness. Full nodes therefore only would store state roots and miner’s would be responsible for
packaging Merkle branches (witnesses) along with blocks which full nodes would verify and download.

4.1.5 Statelessness and Sharding

Unlike in Ethereum 1.0, Ethereum 2.0 will implement stateless miners by leveraging the techniques
described above. Such an upgrade will be necessary for implementing sharding[21], a key upgrade to
the scalability set to be released as a major part of Ethereum 2.0. Sharding is the concept of spreading
the workload of the network across segmented groups to greatly increase transaction throughput. Due
to this massive upgrade to transaction throughput, stateless miners will be required to keep up with
the network to validate their given shard. Additionally, Sharding enables verifiers to only store data
for their shard for a given epoch (a period containing 32 slots, which each contain a new block),
so some state management technique must be put in place to ensure the validity of a given shards



information with respect to the rest of the network. Once again, due to the nature of ongoing research
on Ethereum, there isn’t yet an exact agreed upon solution to this problem.

4.2 Mina Protocol

Mina[8] is a novel blockchain system that aims to create a Succinct Blockchain, in which every block
can be verified in constant time by leveraging the power of Zero Knowledge Proofs. By using recursive
ZK-Snarks, the Mina Protocol is able to create block commitments that attest to the validity of the
entire state, and are able to be stored in a constant 22 Kilobytes, a minuscule figure. In other words,
each block commitment is a ZK-Snark proving the current blockchain state, while also including a
compressed version of the previous blockchain states. This allows for the proof maintained by nodes to
remain incredibly small. Such an accomplishment is a massive breakthrough for blockchain systems,
as it allows anyone with a smartphone to be capable of transactions verification. In addition to the
provably secure Proof of Stake Ouroboros Samasika consensus protocol, Mina provides a revolutionary
cryptocurrency model.

In practice, Mina is able to create reliable, scalable, decentalized applications called ”Snapps,”
which are applications that handle verifications off-chain, while preserving the security and privacy of
traditional blockchains. Although Snapps are largely still in the development stage, they promise effi-
cient, trustless execution akin to smart contracts, while avoiding many of the pitfalls of popular smart
contract blockchains such as Blockchain. While Mina promises a lot, and its ZK-Snark infrastructure
has proven to be effective at maintaining blockchain state, there is one real point of concern with their
architecture.[17] According to their documentation, ”for some usecases, it is useful to maintain this
historical data,” [20]. Many critics are skeptical of whether these archival nodes are truly decentralized,
and believe they may present a single point of failure for many key Mina processes. According to their
documentation, Mina archive nodes can store the archived data in a local postgres database, however,
for redundancy, most nodes use specifically Google Cloud for storage. This has been identified as a
single point of failure for Mina’s system, and it goes against the general idea of decentralization that
is the basis for blockchains in the first place. Although it is still unclear exactly how reliant Mina is
on these archive nodes, it is still an ongoing point of concern for those who analyze the technology
behind Mina. Nonetheless, Mina is a great example of a stateless design for a powerful blockchain and
cryptocurrency system, and once they work out the kinks of their design, it could be a very important
blockchain of the future.

5 State Management Model Comparison

In this section, we provide a summary of the main state management models, listing their advantages
and disadvantages. The techniques within each protocol solves different aspects of the state manage-
ment problem while simultaneously raising their own unique challenges. We provide an overview of
the individual promises of each protocol, as well as the problems associated with each.

10



Table 1: Summary of advantages and disadvantages of different state management models

Model Advantages Disadvantages
Trust e Extremely small memory footprint as e Significant security risks
Delega- nodes only need to store block headers o Creates network centralization as only a
tion e Allows for significantly more nodes to subset of ”full nodes” perform all of the
enter the network (although these addi- necessary validation on transactions
tional nodes do not perform the entire
protocol)
Simple e Backwards compatible with existing pro- | ¢ Nodes lose the ability to bootstrap new
Block tocols (in particular, Bitcoin) nodes on the network
Pruning |e Nodes can discard transaction history e Ability to query historical transaction
( 360GB of state) data is lost
e Does not reduce network load as syn-
chronization still requires full download
of entire transaction history
CoinPrung e Nodes can discard transaction history e Ability to query historical transaction
and Mini- | ( 360GB of state) data is lost on nodes performing pruning
Blockchain o Significant reduction in network load e Transaction data becomes available only
as synchronization depends on account on a limited subset of nodes, leading to
balances ( 4GB for bitcoin) instead of network centralization with respect to
transactions ( 360GB for Bitcoin) parties attempting to query historical
transaction information
EXRAX |e Constant size, lightweight proofs to ver- |e Incompatibility with Merkle Proofs,
ify blockchain state. which would result in a serious overhaul
e No nodes must store the entirety of the of many blockchain systems.
blockchain e Slow speed of vector commitment proof
model.
e Cost to users associated with storing
their own proofs.
Ethereum | ¢ Comprehensive step-by-step implementa- | ¢ No completely stateless solution.
Stateless tion plan with detailed chronology. e Highly conceptual at the moment, there
Design e Gradually shifts to more manageable isn’t an agreed upon solution in develop-
state and better performance beginning ment yet.
with Verkle Trees transition and State e Due to the Ethereum community’s fo-
expiry. cus on implementing Proof of Stake and
e State expiry results in flat 20-50 GB other improvements first, it may be a
stores per full node, a massive improve- long time before stateless solutions are
ment. developed.
e Enables efficient sharding, allowing for
state improvements and throughput scal-
ability.
Mina o Extremely small ( 22 KB), constant e Due to the time required to created a
Protocol state size, due to ZK-Snarks. ZK-Snark, transaction throughput is

Snapps provide lightweight, secure, off-
chain application execution.

Snapps allow for trust-less web-oracles,
high privacy applications, and efficient
decentralized identity implementations.
17)

Increased decentralization due to the
ability to run a full node on basically
any modern device, including smart
phones.

quite limited. Additionally, it takes one
hour for a transactions to become final-
ized, similar to Bitcoin. Such slow trans-
actions throughput and finalization is
not ideal for a broadly used payment
network.

The single point of failure associated
with Archival nodes.

Many features of Mina are still in devel-
opment and somewhat theoretical.
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6 Conclusion and open challenges

Statelessness, although novel in its implementation inside of the blockchain space, has been applied
in the realm of server requests for some time. Statelessness inherently brings with it many advances,
but alongside its implementation comes an overhaul of stateful protocols that require their native
blockchains to store information on its entire state. The implementation of statelessness can compro-
mise the protocols, but as many see it, it is worth the work to bring about true scalability in future
blockchains. Nodes no longer being required to store state brings about a new question, who does
store the state now? Many popular blockchains had a smooth user experience, since users did not have
to worry about storing private state. The question becomes how statelessness can continue to provide
the same smooth experience once it is implemented in widely-used blockchains like Etheruem.

Additionally, many blockchains aim to move towards a Proof-of-Stake(PoS) concept in order to
improve the energy usage and security aspects behind the traditionally implemented Proof-of-Work
protocols. In its current state, statelessness and PoS protocols being implemented together brings a
new host of challenges as blockchain developers and researchers aim to optimize issues surrounding
energy usage, scalability, speed, and security.

In this Systematization of Knowledge, we broke down the relevant research being done in the field
of statelessness, defined different forms of statelessness, and presented both theoretical and practical
implementations of various state management protocols. We defined the concepts of weak, strong,
and probabilistic statelessness, and discussed the advantages of each. We outlined Light Nodes, Hot
Wallets, and discussed various forms of blockchain pruning: the concept of discarding unnecessary
information once a valid blockchain state has been confirmed. Further, we discussed theoretical im-
plementations of statelessness via EDRAX, a protocol that uses short commitments store within each
block to verify the state. Additionally, we discussed noteworthy practical implementations of state-
lessness, including a detailed breakdown of the Ethereum Stateless Road-map and a summarization
of the research efforts being done in the Ethereum community. This multistage road-map consists of
implementing state expiry, verkle trees, and eventually statelessness. Further, we discussed the Mina
Protocol, a promising new Blockchain solution that utilizes revolutionary ZK-Snarks to create recur-
sive zero knowledge commitments of the blockchain state, allowing for a lightweight and constant size
state to be maintained by full nodes. Lastly, we compared the advantages and disadvantages of the
different stateless models discussed in the paper, providing a general outlook of the current state of
the art.

In summary, state size is a major limitation of modern blockchains and threatens the very decen-
tralization that makes blockchain systems desirable. There is an ongoing research effort across the
community to create viable implementations of statelessness in order to solve this scalability problem.
The goal of this SoK was to define different forms of statelessness, provide a comprehensive view into
the current state of research, and demonstrate the direction of practical implementations.
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